SUPER-RECONCILIATION WITH HORIZONTAL GENE TRANSFERS

Mattéo Delabre Nadia El-Mabrouk matteo.delabre@umontreal.ca

University of Montreal

EVOLUTION OF SYNTENIES

- Syntenies: Genomic regions derived from a shared ancestral region.
- Gene families in syntenies do not evolve independently from each other [1].
- Must be taken into account to reconstruct accurate synteny histories.
- Super-Reconciliation: Method for reconstructing the history of syntenies through segmental gain and loss events.

PREVIOUS WORK AND LIMITATIONS

- Algorithms for Super-Reconciliation with *duplication and loss* events (DL), either with unlimited or without any gene rearrangements [2].
- Ignore important evolutionary mechanisms such as Horizontal Gene Transfers (HGTs) and tandem duplications.
- HGTs are essential to the study of the evolution of operons in bacteria.

HOW TO EXTEND SUPER-RECONCILIATION TO INFER HGTs?

SYNTENY TREE

Phylogenetic tree of the syntenies of interest. Each synteny belongs to one of the species of the tree on the right. Computed, for example, from an *alignment* of the syntenies or from a *supertree* of the individual gene trees.

WITHOUT HGTS

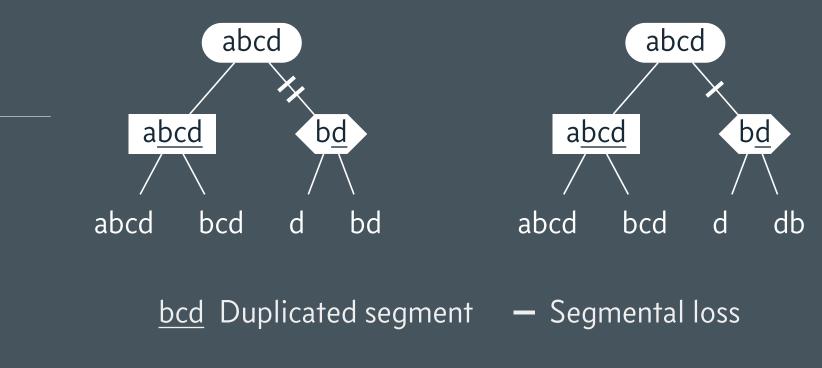
Only speciations, duplications, and full losses are allowed, so the only solution minimizing the number of non-speciation events (the "cost") is the one obtained via *LCA-mapping*. It can be computed in time O(n), where n is the number of nodes in the synteny tree. This example has two duplications and one full loss, so its cost is three.

EVENT LABELLING

Y

SPECIES TREE

Phylogenetic tree of the genomes that contain the syntenies of interest.

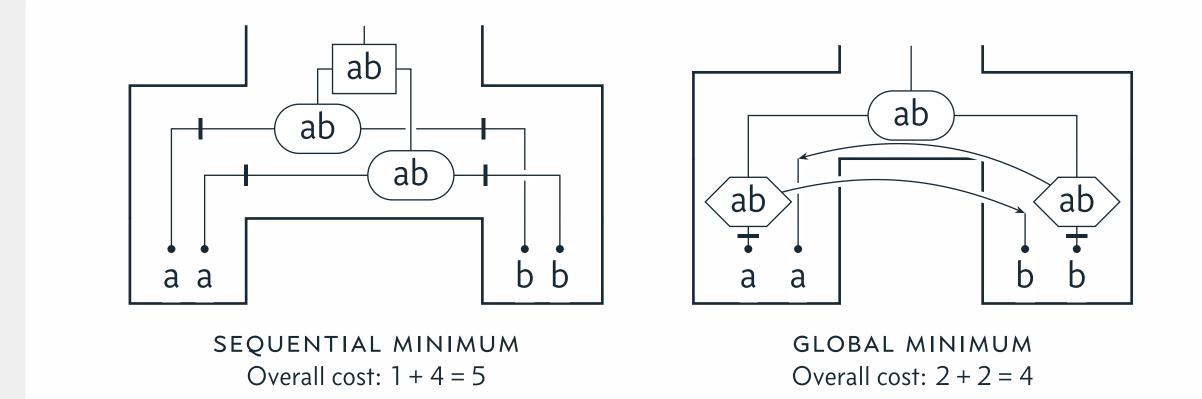

WITH HGTS

More than one mapping can be minimal for the number of non-speciation events. LCA-mapping is not always minimal. This example has one duplication and one HGT, so its cost is two. An optimal solution can be found in time O(nm), with m the number of nodes in the species tree [3].

ORDERED SYNTENIES

Rearrangements are forbidden, so gene families must keep the same relative order in all of the syntenies. The number of segmental losses induced by a labelling is added to the overall cost of a candidate solution, so this example has an overall cost of four. Computing a labelling that minimizes the overall cost is a NP-complete problem that can be solved in time $O(nt2^{t \log t + t})$, where t is the number of gene families [2].

abcd bcd u hd X Y at d bd (X) (X) (X) (Y) (X) (X) (Y) Speciation Duplication + HGT -- Full loss SYNTENY LABELLING



UNORDERED SYNTENIES

Rearrangements are allowed but not minimized. Note the lower-right synteny of this example, whose gene families' order differs from the others. As a consequence of this, each edge can have at most one segmental loss. This example has an overall cost of three. A solution that minimizes the overall cost can be found in time O(nt) [2].

UPDATED ALGORITHMS

- Without HGTs, both parts of the super-reconciliation can be optimized sequentially.
- When HGTs are allowed, we need to explore all combinations to find a global minimum

- (see the example on the right).
- Via dynamic programming: $O(nm^2t2^{t\log t+t})$ (ordered) or $O(nm^2t)$ (unordered).

FUTURE WORK

- Validation of the model via simulations.
- Application to real-world synteny evolution studies.
- Further extensions: tandem duplications, gene gains.

REFERENCES

[1] El-Mabrouk. "Predicting the evolution of syntenies—An algorithmic review" (May 2021).

- [2] Delabre et al. "Evolution through segmental duplications and losses: a Super-Reconciliation approach" (May 2020).
- [3] Bansal et al. "Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss" (2012).

